ReactAgentBuilder - User Guide
Overview
ReactAgentBuilder is the main builder for the DelReact Agent framework. It manages agent workflow, configuration, and execution using a state-driven approach. The new API uses a builder pattern and returns a workflow object for execution.
Basic Usage
1. Builder Pattern & Workflow Object
import { ReactAgentBuilder } from "./src/core/index";
// For provider = 'openrouter', set openaiKey to your OpenRouter API key
const builder = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
openaiKey: process.env.OPENAI_KEY,
openrouterKey: process.env.OPENROUTER_KEY, // Use dedicated OpenRouter key
});
const workflow = builder.init({
selectedProvider: "gemini", // or 'openrouter' for OpenRouter
model: "gemini-2.0-flash", // or your OpenRouter model name
}).build();
const result = await workflow.invoke({
objective: "Plan a marketing campaign for a new product launch"
});
console.log("Result:", result.conclusion);
console.log("Session ID:", result.sessionId);
console.log("Full State:", result.fullState);
console.log("Workflow config:", workflow.config);
console.log("Runtime config:", workflow.runtimeConfig);
console.log("Last result:", workflow.result);
2. With Custom Output Format
const result = await workflow.invoke({
objective: "Analyze competitor pricing strategies",
outputInstruction: "Provide a table of strengths and weaknesses."
});
3. With Session Management
const result = await workflow.invoke({
objective: "Research renewable energy trends",
sessionId: "research-session-001"
});
// Use the same session for follow-up requests
const followUp = await workflow.invoke({
objective: "Create presentation based on renewable energy research",
sessionId: result.sessionId
});
Configuration Options
Constructor Parameters
interface ReactAgentConfig {
geminiKey?: string;
openaiKey?: string;
openrouterKey?: string;
useEnhancedPrompt?: boolean;
memory?: "in-memory" | "postgres" | "redis";
enableToolSummary?: boolean;
sessionId?: string;
braveApiKey?: string;
heliconeKey?: string;
}
Requirements:
- At least one API key must be provided
- If both keys are provided and no provider is selected, defaults to "gemini"
- Use
openrouterKeyfor OpenRouter provider (notopenaiKey) - Each provider now has its own dedicated key for clear separation
Runtime Configuration (init)
builder.init({
selectedProvider: "openai",
model: "gpt-4-turbo",
// ...other runtime options
});
Workflow Object Properties
invoke(request: AgentRequest, config?: any): Promise<AgentResponse>config: The static config used to build the agentruntimeConfig: The runtime config passed viainitresult: The latest agent state/result after an invoke
Direct LLM Call from Builder
You can call the LLM directly from a ReactAgentBuilder instance, using the same configuration and tool context as the workflow:
const builder = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
openaiKey: process.env.OPENAI_KEY,
});
const llmResult = await builder.callLLM("What is known brand of Jeans denim?", {
provider: 'gemini',
model: 'gemini-2.5-flash',
// ...other options
});
console.log(llmResult);
This is useful for one-off completions, tool-augmented LLM calls, or when you want to bypass the full agent workflow but still leverage the builder's config, provider abstraction, and tool registry.
Request Parameters
interface AgentRequest {
objective: string;
prompt?: string;
outputInstruction?: string;
sessionId?: string;
files?: FileInput[];
}
interface FileInput {
type: 'image' | 'document';
data: string | Buffer;
mimeType?: string;
detail?: 'auto' | 'low' | 'high'; // Images only
options?: DocumentOptions; // Documents only
}
interface DocumentOptions {
maxRows?: number;
includeHeaders?: boolean;
sheetName?: string; // For Excel files
}
Unified File Support
DelReact supports multimodal input through the unified files parameter. You can pass both images and documents with proper type discrimination:
- File paths:
"/path/to/image.jpg" - Base64 data URLs:
"..." - Raw base64 strings:
"/9j/4AAQSkZJRgABAQEASABIAAD..." - Buffers:
Buffer.from(imageData)
Example with unified files:
const result = await workflow.invoke({
objective: "Analyze dashboard and underlying data for business insights",
outputInstruction: "Provide comprehensive analysis of visual and structured data",
files: [
{
type: 'image',
data: "/path/to/dashboard.png",
detail: "high"
},
{
type: 'document',
data: "/path/to/sales-data.xlsx",
options: { maxRows: 100, sheetName: 'Q3_Sales' }
},
{
type: 'image',
data: "...",
detail: "auto"
}
]
});
Response Structure
interface AgentResponse {
conclusion: string;
sessionId: string;
fullState: AgentState;
error?: string;
}
Advanced Configuration
1. Update Configuration After Initialization
builder.updateConfig({
openrouterKey: "new-openrouter-key",
provider: "openrouter"
});
2. Provider Switching
// Use Gemini
builder.init({ provider: "gemini" });
const geminiResult = await workflow.invoke({ objective: "Task 1" });
// Use OpenAI
builder.init({ provider: "openai" });
const openaiResult = await workflow.invoke({ objective: "Task 2" });
// Use OpenRouter
builder.init({ provider: "openrouter" });
const openrouterResult = await workflow.invoke({ objective: "Task 3" });
3. Custom Agent Prompts
DelReact allows you to customize the behavior of individual agents by providing custom prompts. This enables domain-specific or industry-tailored agent behavior.
import { TaskBreakdownParams, ActionAgentParams, SummarizerAgentParams } from "delreact-agent";
const builder = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
prompts: {
taskBreakdown: (params: TaskBreakdownParams) => {
return `You are a specialized ${domain} expert.
Break down this objective into ${params.maxTasks} or fewer actionable tasks:
"${params.objective}"
Consider ${industry}-specific requirements and best practices.
Always end with "[summarize]" task.
Return semicolon-separated list only.`;
},
actionAgent: (params: ActionAgentParams) => {
return `You are a ${role} specialist executing: "${params.currentTask}"
For objective: "${params.objective}"
Apply ${domain} expertise and provide practical, actionable guidance.
Consider: ${params.sessionContext}`;
},
summarizerAgent: (params: SummarizerAgentParams) => {
return `Create a comprehensive ${reportType} report summarizing:
${params.actionResults.join("\n")}
For objective: "${params.objective}"
Format: ${params.formatInstruction}
Style: Professional ${industry} reporting standards`;
}
}
});
Available Prompt Types:
1. TaskBreakdown Agent
Parameters (TaskBreakdownParams):
objective(string): The user's main goal that needs to be broken downmaxTasks(number): Maximum number of tasks to generate (typically 5-8)ragGuidance(string): RAG system guidance if enabledsessionContext(string): Previous conversation context and memorydocumentContext(string): Context from processed documents (images, PDFs, etc.)state(AgentState): Current agent state with tasks, results, and execution historyconfig(Record): Runtime configuration including provider settings
2. TaskReplanning Agent
Parameters (TaskReplanningParams):
objective(string): The main goal being pursuedactionedTasks(string[]): Array of completed taskscurrentTasks(string[]): Array of remaining tasks in current planactionResults(string[]): Results from completed tasksragGuidance(string): RAG system guidance for replanningsessionContext(string): Session memory and conversation contextdocumentContext(string): Document-derived contextstate(AgentState): Current agent stateconfig(Record): Configuration settings
3. Action Agent
Parameters (ActionAgentParams):
objective(string): The overall goal the task contributes tocurrentTask(string): The specific task being executed right nowsessionContext(string): Accumulated conversation and memory contextdocumentContext(string): Relevant information from processed filesstate(AgentState): Current workflow state with previous resultsconfig(Record): Configuration settings and runtime parameters
4. Summarizer Agent
Parameters (SummarizerAgentParams):
objective(string): The original goal that was pursuedactionResults(string[]): All results from completed tasksformatInstruction(string): Specific formatting requirements from usersessionContext(string): Session conversation contextdocumentContext(string): Context from processed documentsstate(AgentState): Current agent stateconfig(Record): Configuration settings
5. EnhancePrompt Agent
Parameters (EnhancePromptParams):
objective(string): The original user prompt that needs enhancementsessionContext(string): Previous conversation context for enhancementdocumentContext(string): Context from uploaded documentsstate(AgentState): Current agent stateconfig(Record): Configuration settings
Example - Career Counseling Agent:
const careerAgent = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
prompts: {
taskBreakdown: (params: TaskBreakdownParams) => {
return `You are a career advisor specializing in the Indonesian job market.
Break down this career objective: "${params.objective}"
Consider:
- Indonesian job market trends
- Local industry requirements
- Professional development paths
- Cultural workplace norms
Maximum ${params.maxTasks} tasks, end with "[summarize]"
Return semicolon-separated list only.`;
},
actionAgent: (params: ActionAgentParams) => {
return `As a career counselor, complete: "${params.currentTask}"
For: "${params.objective}"
Provide Indonesia-specific advice considering:
- Local job market conditions
- Available platforms and resources
- Professional development opportunities
- Cultural considerations`;
}
}
});
Each prompt function receives context parameters including objective, session context, document context, and configuration. See the Custom Agent Prompt Guide for detailed examples and best practices.
4. Separate Model Configuration
DelReact supports different models for reasoning and execution agents, enabling cost optimization and performance tuning:
// Cost-optimized: Fast reasoning, quality execution
const workflow = builder.init({
reasonProvider: "gemini", // Fast for planning
reasonModel: "gemini-2.0-flash",
provider: "openai", // Quality for outputs
model: "gpt-4o-mini"
}).build();
// Same provider, different models
const workflow2 = builder.init({
reasonProvider: "openai",
reasonModel: "gpt-4o-mini", // Fast reasoning
provider: "openai",
model: "gpt-4o" // Quality execution
}).build();
Agent Types:
- Reasoning Agents (use
reasonProvider/reasonModel): TaskBreakdown, TaskReplanning, EnhancePrompt - Execution Agents (use
provider/model): Action, Completion
Backward Compatibility: Existing single-model configurations continue to work unchanged (selectedProvider is still supported).
Real-World Examples
1. Content Creation Workflow
const workflow = new ReactAgentBuilder({
openaiKey: process.env.OPENAI_KEY,
provider: "openai" // Updated semantic naming
}).init(...).build();
const blogPost = await workflow.invoke({
objective: "Create a comprehensive blog post about sustainable living practices",
});
console.log("Blog Post:", blogPost.conclusion);
2. Business Analysis Pipeline
const workflow = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY
}).init(...).build();
const marketAnalysis = await workflow.invoke({
objective: `Analyze the electric vehicle market in North America for Q1 2024`,
sessionId: "market-analysis-ev-q1-2024"
});
const competitorDeepDive = await workflow.invoke({
objective: "Deep dive analysis of Tesla's competitive positioning based on the previous market analysis",
sessionId: marketAnalysis.sessionId
});
3. Technical Documentation Generator
const workflow = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
selectedProvider: "gemini"
}).init(...).build();
const apiDocs = await workflow.invoke({
objective: "Create comprehensive API documentation for a REST API with user authentication, CRUD operations, and file upload endpoints",
});
import fs from 'fs';
fs.writeFileSync('api-documentation.md', apiDocs.conclusion);
4. Research and Data Analysis
const workflow = new ReactAgentBuilder({
openaiKey: process.env.OPENAI_KEY,
selectedProvider: "openai"
}).init(...).build();
const researchReport = await workflow.invoke({
objective: `Research and analyze the impact of remote work on employee productivity and company culture in tech companies, focusing on studies from 2022-2024`,
});
console.log("Research completed:", researchReport.sessionId);
console.log("Report length:", researchReport.conclusion.length);
Error Handling
1. Basic Error Handling
try {
const result = await workflow.invoke({ objective: "Some task" });
} catch (error) {
console.error("Request failed:", error.message);
}
2. Robust Error Handling with Retry Logic
async function executeWithRetry(workflow, request, maxRetries = 3) {
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
return await workflow.invoke(request);
} catch (error) {
if (attempt === maxRetries) throw error;
}
}
}
const result = await executeWithRetry(workflow, {
objective: "Critical task that must succeed"
});
Performance Optimization
1. Reuse Workflow Instances
const workflow = new ReactAgentBuilder({ geminiKey: "key" }).build();
const results = await Promise.all([
workflow.invoke({ objective: "Task 1" }),
workflow.invoke({ objective: "Task 2" })
]);
2. Batch Processing
async function processBatch(workflow, objectives) {
const results = [];
for (const objective of objectives) {
results.push(await workflow.invoke({ objective }));
}
return results;
}
const objectives = [
"Analyze market trends for Q1",
"Evaluate customer feedback patterns"
];
const batchResults = await processBatch(workflow, objectives);
console.log(`Processed ${batchResults.length} tasks`);
Integration Patterns
1. Express.js API Server
import express from 'express';
import { ReactAgentBuilder } from "delreact-agent";
const app = express();
app.use(express.json());
const workflow = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
openaiKey: process.env.OPENAI_KEY
}).build();
app.post('/api/agent/execute', async (req, res) => {
try {
const result = await workflow.invoke(req.body);
res.json(result);
} catch (error) {
res.status(500).json({ error: error.message });
}
});
app.listen(3000, () => {
console.log('Agent API server running on port 3000');
});
2. Queue-Based Processing
import { Queue } from 'bull';
import { ReactAgentBuilder } from "delreact-agent";
const agentQueue = new Queue('agent processing');
const workflow = new ReactAgentBuilder({ geminiKey: process.env.GEMINI_KEY }).build();
agentQueue.process(async (job) => {
const { objective, outputInstruction, userId } = job.data;
return await workflow.invoke({ objective, outputInstruction });
});
export function queueAgentTask(objective, userId, outputInstruction) {
return agentQueue.add('process', { objective, outputInstruction, userId });
}
Monitoring and Observability
1. Built-in Session Tracking
const result = await workflow.invoke({
objective: "Track this execution",
sessionId: "custom-tracking-id"
});
console.log("Track execution with ID:", result.sessionId);
2. Error Handling with Retry Logic
async function executeWithRetry(agent, input, maxRetries = 3) {
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
const result = await agent.invoke(input);
if (!result.error) {
return result;
}
console.warn(`Attempt ${attempt} failed: ${result.error}`);
if (attempt === maxRetries) {
throw new Error(`Max retries reached. Last error: ${result.error}`);
}
// Wait before retry
await new Promise(resolve => setTimeout(resolve, 1000 * attempt));
} catch (error) {
if (attempt === maxRetries) {
throw error;
}
console.warn(`Attempt ${attempt} threw error: ${error.message}`);
await new Promise(resolve => setTimeout(resolve, 1000 * attempt));
}
}
}
// Usage
const result = await executeWithRetry(agent, {
objective: "Critical task that must succeed"
});
Event System & Observability
ReactAgentBuilder supports a robust event-driven system for real-time observability and workflow integration. You can subscribe to key agent lifecycle events to monitor progress, log details, or trigger custom logic.
Available Events
| Event Name | Description |
|---|---|
taskBreakdown | Emitted after the TaskBreakdownAgent generates the task list. |
taskReplan | Emitted after the TaskReplanningAgent replans the task list. |
enhancingPrompt | Emitted when EnhancePromptAgent starts prompt enhancement. |
finalEnhancement | Emitted after EnhancePromptAgent produces the final enhancement. |
evaluateState | Emitted when TaskReplanningAgent evaluates the current state. |
summarizeTaskDetected | Emitted when a summarize task is detected in replanning. |
addingSummarizeTask | Emitted when a summarize task is added due to objective completion. |
summaryCompleted | Emitted after CompletionAgent produces the final summary. |
agent:log | Emitted for every logExecution call (all agent logs). |
Note: The
operationfield in the payload matches the event name for most events.agent:logis a catch-all for all logExecution calls.
How to Listen to Events
Subscribe to events using .on(eventName, handler) on your ReactAgentBuilder instance:
const builder = new ReactAgentBuilder(config);
builder.on("taskBreakdown", (payload) => {
console.log("Task breakdown event:", payload.data);
});
builder.on("agent:log", (payload) => {
// Listen to all agent logs
console.log(`[${payload.agent}] (${payload.operation}):`, payload.data);
});
To unsubscribe, use .off(eventName, handler).
Payload Structure
All event payloads have the following shape:
{
agent: string, // Name of the agent emitting the event
operation: string, // Operation or event type
data: any, // Event-specific data (e.g., tasks, results, state)
sessionId?: string // (Optional) Session identifier for tracking
}
Use Cases
- Progress Tracking: Update UI or logs as each agent completes a step.
- Custom Analytics: Collect metrics on agent workflow, task breakdowns, or completions.
- Debugging: Listen to
agent:logfor all internal logs and state transitions. - Notifications: Trigger notifications or side effects when certain events occur (e.g., summary completed).
For a full list of events and their payloads, see the agent source code or subscribe to
agent:logto observe all emitted events in real time.
This comprehensive guide covers all aspects of using ReactAgentBuilder effectively, from basic usage to advanced integration patterns and monitoring strategies.