Skip to main content

Quick Reference

1. Basic Workflow

import { ReactAgentBuilder } from "delreact-agent";

// For provider = 'openrouter', set openaiKey to your OpenRouter API key
const builder = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
});

const workflow = builder.init({
provider: "gemini", // or 'openrouter' for OpenRouter
model: "gemini-2.0-flash", // or your OpenRouter model name
}).build();

const result = await workflow.invoke({
objective: "Your task here"
});

console.log(result.conclusion);

2. Runtime Config & Session

const workflow = builder.init({
provider: "openai",
model: "gpt-4o-mini"
}).build();

const result = await workflow.invoke({
objective: "Analyze something",
sessionId: "my-session-001"
});

3. Custom Output Format

const result = await workflow.invoke({
objective: "Summarize this article",
outputInstruction: "Return a bullet list."
});

3.1. Unified File Interface (Images + Documents) - NEW

const result = await workflow.invoke({
objective: "Analyze sales dashboard and underlying data",
outputInstruction: "Provide comprehensive analysis with insights and recommendations",
files: [
{
type: 'image',
data: "/path/to/dashboard.png",
detail: "high"
},
{
type: 'document',
data: "/path/to/sales-data.xlsx",
options: { maxRows: 100, sheetName: 'Q3_Sales' }
},
{
type: 'image',
data: "...",
detail: "auto"
},
{
type: 'document',
data: "/path/to/metrics.csv",
options: { maxRows: 50 }
}
]
});

4. Accessing State & Config

console.log(workflow.config);        // Static config
console.log(workflow.runtimeConfig); // Runtime config
console.log(workflow.result); // Last agent state/result

5. Direct LLM Call from Builder

You can call the LLM directly using the builder instance, with all config and tool context:

const builder = new ReactAgentBuilder({
geminiKey: process.env.GEMINI_KEY,
openaiKey: process.env.OPENAI_KEY,
});

// Text-only call
const llmResult = await builder.callLLM("What is known brand of Jeans denim?", {
provider: 'gemini',
model: 'gemini-2.5-flash',
// ...other options
});

// Multimodal call with files processed first
const { images } = await processFileInputs([
{ type: 'image', data: "/path/to/image.jpg", detail: "high" }
]);
const visionResult = await builder.callLLM("Describe what you see in this image", {
provider: 'gemini',
model: 'gemini-2.5-flash',
images: images
});
console.log(visionResult);

5.1. Separate Model Configuration

// Cost-optimized: Fast reasoning, quality execution
const workflow = builder.init({
reasonProvider: "gemini", // Fast for planning
reasonModel: "gemini-2.0-flash",
provider: "openai", // Quality for outputs
model: "gpt-4o-mini"
}).build();

// Same provider, different models
const workflow2 = builder.init({
reasonProvider: "openai",
reasonModel: "gpt-4o-mini", // Fast reasoning
provider: "openai",
model: "gpt-4o" // Quality execution
}).build();

// Backward compatible (unchanged - selectedProvider still supported)
const workflow3 = builder.init({
provider: "gemini", // or selectedProvider (legacy)
model: "gemini-2.0-flash" // All agents use this
}).build();

6. Error Handling

try {
const result = await workflow.invoke({ objective: "Do something" });
} catch (error) {
console.error(error);
}

7. Batch Processing

async function batch(workflow, objectives) {
return Promise.all(objectives.map(obj => workflow.invoke({ objective: obj })));
}

9. Express API Example

import express from 'express';
const app = express();
const workflow = new ReactAgentBuilder({ geminiKey: process.env.GEMINI_KEY }).init(...).build();

app.post('/api/agent', async (req, res) => {
const result = await workflow.invoke(req.body);
res.json(result);
});

10. Event System Quick Reference

Listen to Agent Events

const builder = new ReactAgentBuilder(config);
builder.on("taskBreakdown", (payload) => {
console.log("Task breakdown event:", payload.data);
});
builder.on("agent:log", (payload) => {
// Listen to all agent logs
console.log(`[${payload.agent}] (${payload.operation}):`, payload.data);
});

Available Events

  • taskBreakdown: After task breakdown
  • taskReplan: After task replanning
  • enhancingPrompt: When prompt enhancement starts
  • finalEnhancement: After prompt enhancement completes
  • evaluateState: When replanning agent evaluates state
  • summarizeTaskDetected: When summarize task is detected
  • addingSummarizeTask: When summarize task is added
  • summaryCompleted: After summary/conclusion is produced
  • agent:log: All agent logs (catch-all)

Payload Shape

{
agent: string, // Name of the agent emitting the event
operation: string, // Operation or event type
data: any, // Event-specific data (e.g., tasks, results, state)
sessionId?: string // (Optional) Session identifier for tracking
}

11. Control Task Breakdown Granularity

You can control the maximum number of tasks generated during task breakdown by setting the maxTasks runtime config parameter. Default is 5

A larger value for maxTasks means the agent will break down the objective into more, smaller steps—resulting in a more detailed and thorough plan.

const workflow = builder.init({
maxTasks: 3, // Limit task breakdown to 3 tasks (plus summarize)
provider: "gemini",
model: "gemini-2.5-flash"
}).build();

const result = await workflow.invoke({
objective: "Plan a product launch for a new SaaS tool"
});

console.log(result.fullState.tasks); // Will contain at most 3 tasks + summarize

Tip: Always use .build() to get the workflow object before calling invoke. Use init() for runtime overrides.